Thermal Stability of the CH_3 Group Adsorbed on the Pd(100) Surface

Frigyes Solymosi* and Károly Révész

Contribution from the Reaction Kinetics Research Group and Institute of Solid State and Radiochemistry,[†] University of Szeged, P.O. Box 168, H-6701 Szeged, Hungary. Received February 4, 1991

Abstract: The adsorption and subsequent dissociation of CH₃I on Pd(100) have been investigated with ultraviolet photoelectron spectroscopy, Auger electron spectroscopy, temperature-programmed desorption, and work function change over the temperature range 85-600 K. We find that CH₃I adsorbs molecularly at 85 K and dissociates at 100-150 K to give adsorbed I and CH₃. The latter compound decomposes above 150 K to yield methane. The thermal stability of adsorbed CH₃ (250 K) is much lower than that found for CH_3 (400 K) formed in the dissociation of CH_3OH on the Pd(111) surface.²

Recently, an interesting discussion proceeded in this journal on the question of whether the C-O bond of CH₃OH can be thermally dissociated on a clean Pd surface.¹⁻³ In contrast with previous studies, where only cleavage of the O-H bond of chemisorbed CH₃OH and formation of the species CH₃O were established,4-7 Winograd et al.1.2 reported an efficient C-O bond scission of chemisorbed CH₃OH and formation of the species CH₃ on the Pd(111) surface. SIMS (secondary-ion mass spectroscopy) and XPS (X-ray photoelectron spectroscopy) were used to identify the adsorbed CH₃. However, Yates et al.³ subsequently observed no C-O bond scission in the thermal decomposition of CH₃OH on Pd(111), as demonstrated by the absence of isotopic exchange in the desorbing CO and CH₃OH products from coadsorbed ${}^{13}CH_3{}^{16}OH$ and ${}^{12}CH_3{}^{18}OH$.

This controversy prompted us to examine this question further, as the possible activation of the methanolic C-O bond represents a new route for CH₃OH dissociation, which is strongly relevant to the catalytic synthesis and reactions of CH₃OH. We wish to contribute to the solution of this problem with a study of the thermal stability of CH₃ adsorbed on a Pd surface, as the surface species attributed to CH_3 by Winograd et al.^{1.2} exhibited an unusually high thermal stability: it was detected even at ~ 400 K. A surface species displaying such a high thermal stability was also identified by Christmann and Demuth⁵ in a study of CH₃OH adsorbed on the Pd(100) surface: this species was ascribed to an adsorbed CH₃O complex.

In the present work, adsorbed CH₃ was generated in the dissociation of CH₃I. This allowed elimination of the disturbing effects of CH₃O (which was produced in CH₃OH decomposition even in the work of Winograd et al.^{1,2}) and led to adsorbed CH_3 in much higher concentrations than in the case of CH₃OH adsorption.

Experimental Section

The Pd(100) sample was cleaned by prolonged cycles of Ar⁺ ion bombardment (1.0 kV, 2 µA/cm², 1000 K), annealing (1200 K), oxygen treatment (1000 K), and annealing (1200 K), which are sufficient to remove the surface carbon.^{3,8} The oxygen, sulfur, phosphorus, and carbon impurities on the cleaned surface were estimated to be less than 0.1% of a monolayer. Experiments were performed in a standard ultra-high-vacuum chamber equipped with facilities for Auger electron spectroscopy (AES), ultraviolet photoelectron spectroscopy (UPS), thermal desorption spectroscopy (TDS), and work function measurements.9

Results and Discussion

In the first series of measurements, we examined the adsorption and dissociation of CH₃I. Figure 1 shows the thermal desorption spectra of CH₃I obtained after the adsorption of CH₃I at different exposures at 85 K. At low exposures, 0.05-2.0 langmuirs, there was no molecular desorption of CH_3I . Above an exposure of 2 langmuirs, a single desorption peak developed at 121 K, which did not saturate even at high CH₃I exposures: this state is assigned to multilayers.

The lack of a desorption peak for CH₃I at low coverages indicates that all chemisorbed molecules underwent dissociation during the temperature-programmed desorption (TPD) cycle. The major desorption product was CH_4 , with $T_p = 170$ and 215 K (Figure 1). CH₄ formation was detected even at very low exposures (0.05 langmuir). Other hydrocarbons, including C_2H_6 $(T_p = 175 \text{ K}), C_2H_4 (T_p = 240 \text{ K}), \text{ and } H_2 (T_p = 332 \text{ K}), \text{ were}$ detected only in trace amounts. This fact suggests that the CH₃ radical, as a primary dissociation product of CH₃I, is decomposed and hydrogenated to form CH4. A great effort was made to detect surface carbon by Auger electron spectroscopy. However, as was pointed out by Musket et al.,¹⁰ the AES detection of less than 0.25 monolayer of carbon is very difficult due to the overlap of the C (KLL) peak at approximately 270 eV and the large Pd (MNN) peak at 279 eV. We found that the Pd₂₇₉/Pd₃₃₀ ratio for the clean surface agreed well with that measured after the desorption of $CH_{1}I$ and CH_{4} . This indicates that only a very small amount of C formed in the surface reaction.

The adsorption and dissociation of CH₁I were also followed by Auger electron spectroscopy. Figure 2A depicts the change in the intensity of the relative AES signal ($R_1 = I_{511}/Pd_{330}$) as a function of CH₃I exposure. Saturation was attained at about 3.0 langmuirs. The extent of dissociation was calculated by measuring the R value after the adsorbed layer was heated to 150 K, where the molecularly adsorbed CH₃I desorbed completely and no other CH, I compounds were indicated by UPS. In harmony with the previous speculation, the extent of dissociation was $\sim 100\%$ at saturation during the heating to 150 K. Figure 2B demonstrates that the adsorbed I formed in the dissociation is stable on the surface up to 800 K. The spectrum of the clean surface was attained at about 1100 K.

The work function of Pd(100) decreased linearly up to monolayer coverage ($\Delta \Phi = 1.85 \text{ eV}$) and then increased by about 0.25 eV when the multilayer was formed. The decrease in the work function suggests that the adsorbed CH₃I has a positive outward dipole moment. This is consistent with the bonding of molecular methyl halides through the halogen atom.¹¹ When an adsorbed

- (2) Levis, R. J.; Zhicheng, J.; Winograd, N. J. Am. Chem. Soc. 1989, 111, 4605.
- (3) Guo, X.; Hanley, L.; Yates, J. T., Jr. J. Am. Chem. Soc. 1989, 111, 3155.
 - (4) Lüth, H.; Rubloff, G. W.; Grobman, W. D. Surf. Sci. 1977, 63, 325.
 - (5) Christmann, K.; Demuth, J. E. J. Chem. Phys. 1982, 76, 6308, 6318.
 (6) Gates, J. A.; Kesmodel, L. L. J. Catal. 1983, 83, 437.
 (7) Davis, J. L.; Barteau, M. A. Surf. Sci. 1987, 187, 387.
- (8) Berkö, A.; Solymosi, F. J. Phys. Chem. 1989, 93, 12.
 (9) Zhou, X. L.; Solymosi, F.; Blass, P. M.; Cannon, K. C.; White, J. M.
- Surf. Sci. 1989, 219, 294 and references therein. (10) Musket, R. G.; McLean, W.; Colmenares, C. A.; Makowiecki, D. M.; Siekhaus, W. J. Appl. Surf. Sci. 1982, 10, 143.

⁺ This laboratory is part of the Center for Catalysis, Surface, and Material Science at the University of Szeged.

⁽¹⁾ Levis, R. J.; Jiang, Z. C.; Winograd, N. J. Am. Chem. Soc. 1988, 110, 4431. Levis, R. J.; Jiang, Z. C.; Winograd, N.; Akhter, S.; White, J. M. Catal. Lett. 1988, 1, 385

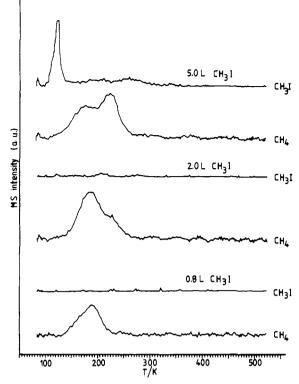


Figure 1. Thermal desorption spectra of CH_3I and CH_4 from CH_3I adsorbed on Pd(100) at 85 K. Heating rate was 8 K/s.

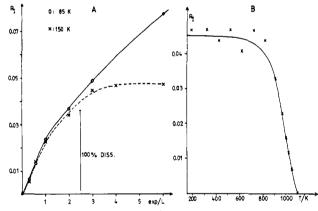


Figure 2. (A) Relative intensity of the iodine Auger signal ($R_I = I_{511}/Pd_{330}$) at 85 K and after heating the adsorbed layer to 150 K as a function of CH₃I exposure. (B) Changes of the R_I value upon heating the adsorbed layer to higher temperature.

layer was heated, there was a sudden decrease in the work function at 110-140 K, corresponding to desorption of the multilayer. This stage was followed by a gradual increase up to ~ 250 K and then by a constant state up to 800 K. In this state, the work function of the sample was 0.28 eV lower than that of the clean surface, which was restored only at 1100 K.

Figure 3 shows the UP spectra of the Pd(100) surface at low and at high exposures of CH₃I at 85 K. At 0.6 langmuir (and below), only one new emission developed, at 8.5 eV, which is attributed to the 1e orbital of the pyramidal CH₃ radical.¹² In the photoinduced dissociation of CH₃Cl, the characteristic photoemission of the adsorbed CH₃ species was observed at practically the same energy, 8.2 eV.^{13,14} At higher exposure, other photoemission peaks appeared at 4.3, 6.6, and 9.0 eV, which we

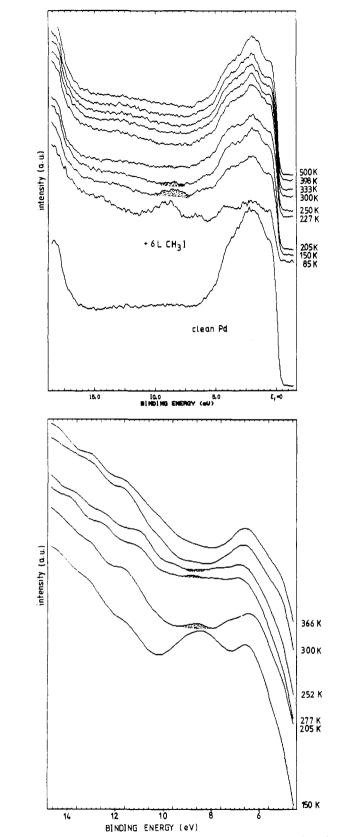


Figure 3. He II photoelectron spectra (A, top) following CH_3I adsorption on Pd(100) at 85 K and (B, bottom) after heating the adsorbed layer to different temperatures. The spectra in part B are difference spectra smoothed by the fast Fourier transform method.¹³

attribute to molecularly adsorbed CH_3I . These emissions were eliminated when the adsorbed layer was heated to 150 K, where only an intense signal remained at 8.5 eV, due to the CH_3 group.

The thermal stability of the adsorbed CH_3 species was determined at low (0.1 monolayer) and high CH_3 coverage. In the

⁽¹¹⁾ Jorgensen, W. L.; Salem, L. The Organic Chemist's Book of Orbitals; Academic Press: New York, 1973.

 ⁽¹²⁾ Solymosi, F.; Kiss, J.; Révész, K. J. Phys. Chem. 1990, 94, 2224.
 (13) Solymosi, F.; Kiss, J.; Révész, K. J. Chem. Phys., in press.

 ⁽¹³⁾ Solymosi, F.; Kiss, J.; Revesz, K. J. Chem. Phys., in press.
 (14) Kosarev, E. L.; Pantos, E. J. Phys. E: Sci. Instrum. 1983, 16, 537.

latter case, the surface was saturated with CH_3 (and I) via multiple adsorption/desorption cycles for CH_3I (adsorption at 85 K and desorption at 150 K). Afterward, the adsorbed layer was gradually heated to higher temperature. To avoid the readsorption of CH_3I from the background, the UPS spectrum was always recorded at 150 K. In order to increase the sensitivity of the measurements, the data collection time for the UPS spectra was extended to 30 min. For the detection of weak signals due to the adsorbed CH_3 species at higher temperature, we used the difference spectra (these were produced by subtracting the spectrum of a clean Pd(100) surface from each subsequent spectrum obtained after heating the adsorbed layer to different temperatures). Results are plotted in Figure 3.

It appears that the intensity of the signal at 8.5 eV at high CH₃ coverage is greatly decreased above 150 K, where the transformation of CH₃ into CH₄ proceeded. The emission at this energy can be detected up to 250 K. A signal of the same intensity was observed when the adsorbed CH₃ group was heated to 250 K immediately after its preparation.

The same features were observed at low CH_3 coverage with the difference that the initial attenuation of the CH_3 signal at 8.5 eV was smaller. The obvious reason is that the rate and the probability of the recombination of CH_3 groups at low CH_3 concentration are significantly reduced. The results suggest that the CH_3 decomposition does depend on the availability of surface sites, but the details of the site requirements remain an open question.

All these results suggest that the adsorbed CH₃ species exists on the Pd(100) surface, but its thermal stability is much less than that of the species produced by a low exposure of CH₃OH on Pd(111) and assigned as CH₃.^{1,2} In that case, the intensity of the CH₃⁺ ion in SIMS was detected even at 400 K.

Before going further, we have to consider that the dissociation of CH_3OH should lead to adsorbed OH together with the CH_3 species, which may exert a stabilizing influence on $CH_3(a)$. This would not be surprising if OH(a) behaves like O(a), which increases the stability of a number of surface species on the Pt metals. However, our experiments in this context demonstrated that O coadsorbed at different coverages exerts no or only a slight stabilizing influence on the CH_3 group adsorbed on the Pd(100) surface.

It may be said that the XPS and SIMS methods applied by Winograd et al.^{1,2} are more sensitive than the UPS used in the present work, and they were able to detect a very small amount of adsorbed CH₃. In this respect, we mention that the accuracy of measurements with the isotopic-mixing method is such that, if >1% of adsorbed CH₃OH dissociates by C-O bond fission, it can be detected by the production of ¹³C¹⁸O or an isotopically mixed CH₃OH species.³ In spite of this very sensitive technique, Yates et al.³ found no indication of the rupture of the C-O bond.

In the light of these results, and of those obtained by Yates et al.,³ we may speculate that the species attributed to CH₃ by Winograd et al.^{1.2} was not in fact adsorbed CH₃ but rather CH₃O. In a study of the decomposition of CH₃OH on the Pd(100) surface, Christmann and Demuth⁵ observed three kinds of CH₃O, one of which was stable even at ~450-500 K, which apparently supports the above speculation. Although this is a tempting conclusion, great care should be taken before a final conclusion is reached. The possibility cannot be excluded that the Pd(111) surface used by Winograd et al.^{1.2} contained certain defects which could activate the methanolic C-O bond. Alternatively, the coadsorbed iodine on our crystal decreased the stability of adsorbed CH₃ in the present case. Further investigations are clearly needed on this subject.

Note Added in Proof. Our attention was recently called to the work of Kruse et al.,¹⁵ who also studied the decomposition of methanol on the Pd(111) surface. They found that the dominant route in the dissociation of CH₃OH involves O-H bond breaking. Adsorbed CH₃ was also detected, but this species does not represent a major reactive intermediate.

Registry No. Pd, 7440-05-3; CH₃I, 74-88-4; CH₃, 2229-07-4.

⁽¹⁵⁾ Kruse, N.; Rebholz, M.; Matolin, V.; Chuah, G. K.; Block, J. H. Surf. Sci. 1990, 238, L457.